
Database Instructions
For Proper Code Generation
v1.0.1 21.11.2019

Version Date Description Update By

0.8 20.05.2019 First Version Team

0.9 19.06.2019 FluentValidation added Team

0.10 20.06.2019 Column order, Create scripts and Some pictures added. Team

0.11 21.06.2019 Best Practices enriched and Design Suggestions added. Team

0.12 01.07.2019 Document title changed from “DB Conventions for
Scaffolding” to “Database Instructions For Proper Code
Generation”.
Genesis DB chapter added to “What Happens”.
Some wordings were corrected.

Team

1.0 01.07.2019 Maturity accepted by the team. Team

1.0.1 21.11.2019 Minor sentence updates Team

Purpose
Follow suggestions below in order to utilize and maximize the efficiency and benefits of your
code generation via CLI.

Naming
➔ Camel case, Upper camel case, Snake case and so on… They are all welcome as long

as it allows us to split the column name in order to generate your labels and titles
appropriately.

➔ Don’t use whitespaces.
➔ Don't use reserved keywords for database, tables, columns or indexes.

Some examples of reserved keywords: Program, Parameters, Function, Group, Desc,
Exception and so on. For more detail, check your database’s official manuel.

Good naming examples;

veryWellDone VeryWellDone very_well_done Very_Well_Done

Data Types
➔ Choose proper types and respective data sizes.

Data Type UI Component (ComponentType)

Int(11), Integer, Tinyint etc. NUMERIC_INPUT

Decimal(10,2) NUMERIC_INPUT​ (decimal point)

Varchar(100), Nvarchar, Char FORM_CONTROL

Text TEXT_AREA

Datetime, Date, Timestamp etc. DATE_PICKER

Boolean, BIT TOGGLE

If a Foreign Key DROPDOWN

➔ State if it is a ​Primary Key​ and set if it must be ​Auto incremented​. Good examples;

◆ user_id INT AUTO_INCREMENT PRIMARY KEY
◆ CustomerID int NOT NULL PRIMARY KEY
◆ CONSTRAINT PK_Person PRIMARY KEY (personId)

Column Order
Column order in table sometimes does matter;
➔ First 2 string-type columns will be added as filter/criteria for listing (except Primary Key)

➔ First 5 columns will be added to the Grid (except Primary Key)

CREATE​ ​TABLE​ ​`Members ​̀ (
 ​`memberId ​̀ ​int​(​11​) ​NOT​ ​NULL​ ​AUTO_INCREMENT​,
 `gender ​̀ ​tinyint​(​4​) ,
 ​ ​̀contactName​ ​̀ ​varchar​(​50​) ​NOT​ ​NULL​,
 ​ ​̀contactSurname​ ​̀ ​varchar​(​50​) ​NOT​ ​NULL​,
 ​ ​̀company​ ​̀ ​int​(​11​) ,
 ​ ​̀jobTitle​ ​̀ ​varchar​(​100​) ,
 ​ ​̀email​ ​̀ ​varchar​(​80​) ,
 ​`countryId ​̀ ​int​(​11​) ,
 ​`cityId ​̀ ​int​(​11​) ,
 ​`address ​̀ ​varchar​(​500​) ,
 ​`birthDate ​̀ ​date​ ,
 ​`maritalStatus ​̀ ​tinyint​(​4​) ,
 ​`phoneNumber ​̀ ​varchar​(​254​) ,
 ​`membershipStartDate ​̀ ​date​ ,
 ​`isMember ​̀ ​boolean​ ​DEFAULT​ ​false​,
 ​`insertedDate ​̀ ​timestamp​ ​NULL​,
 ​`status ​̀ ​int​(​11​) ​DEFAULT​ ​1​,
 ​PRIMARY​ ​KEY​ (​`memberId ​̀) ​);

Constraints
❏ We again emphasize that all tables MUST have an integer Primary Key and that column

may need to be auto-incremented.

❏ Foreign keys are ought to be addressed.

Best Practices
➔ Use ​integer id fields as primary key for all tables. Avoid using a name like ID as the

PK of each table. It will lead to lots of aliasing when joining other tables and returning

multiple IDs from several tables.

➔ Before scaffolding use physical connections between tables such as ​Foreign Keys​. You

can remove them later.

➔ If a column is mandatory, set it as ​Not Nullable. ​So it is going to be checked

automatically with proper user-friendly message.

➔ If there is a ​Max length​, appropriate validations are going to be performed.

➔ If there is one, set ​Default value. ​It will be set also in backend & frontend models/types.

➔ Write ​Comment or Description ​especially for objects which are not so obvious and

need clarification. (on the way)

CREATE​ ​TABLE​ ​`Companies ​̀ (
 ​`companyId ​̀ ​int​(​11​) ​NOT​ ​NULL
AUTO_INCREMENT​,
 ​`companyName ​̀ ​varchar​(​150​) ​NOT​ ​NULL​,
 ​`sectorId ​̀ ​int​(​11​) ​NOT​ ​NULL​,
 ​`countryId ​̀ ​int​(​11​) ​NOT​ ​NULL​ ​DEFAULT​ ​'209'​,
 ​`cityId ​̀ ​int​(​11​) ,
 ​`townId ​̀ ​int​(​11​) ,
 ​`address ​̀ ​varchar​(​250​) ,
 ​`telephone ​̀ ​varchar​(​20​) ,
 ​`email ​̀ ​varchar​(​150​) ,
 ​`webSite ​̀ ​varchar​(​100​) ,
 ​`note ​̀ ​text​,
 ​`insertedUserId ​̀ ​int​(​11​) ,
 ​`insertedDate ​̀ ​datetime​ ​DEFAULT
CURRENT_TIMESTAMP​,
 ​`contactName ​̀ ​varchar​(​100​) ,
 ​`status ​̀ ​int​(​11​) ​NOT​ ​NULL​ ​DEFAULT​ ​'1'​,
 ​PRIMARY​ ​KEY​ (​`companyId ​̀),
 ​UNIQUE​ ​KEY​ ​`CompanyName_must_be_unique`
(​`companyName ​̀),
 ​KEY​ ​`Companies_sectorId_fk ​̀ (​`sectorId ​̀),
 ​CONSTRAINT​ ​`Companies_sectorId_fk`
FOREIGN​ ​KEY​ (​`sectorId ​̀) ​REFERENCES
`Sectors ​̀ (​`sectorId ​̀)
) ;

Design Suggestions
➔ At least one of the columns must be ​NOT NULL (other than ID column). There is no use

in a total blank/empty row.

➔ Beware of ​order of columns​ for meaning, traceability and fast viewing issues.

➔ Use ​well defined and consistent names for tables and columns. (e.g. School,

StudentCourse, CourseID ...)

➔ Use ​singular for table names (i.e. use StudentCourse instead of StudentCourses).

Table represents a collection of entities, there is no need for plural names.

➔ Don’t use spaces, hyphens, quotes ​for table names. Otherwise you will have to use ‘{‘,

‘[‘, ‘“’ etc. characters to define tables (i.e. for accessing table Student Course you'll write

“Student Course”. StudentCourse is much better).

➔ Don’t use ​unnecessary prefixes or suffixes for table names (i.e. use School instead of

TblSchool, SchoolTable).

➔ Try limiting ​total columns per table​ up to about 150.

➔ Use ​bit fields for boolean values. Using integer or varchar is unnecessarily storage

consuming. Also start those column names with “Is”.

➔ Use constraints (foreign key, check, not null ...) for data integrity. Don’t give whole

control to application code.

➔ Use ​indexes for frequently used queries on big tables. Analyser tools can be used to

determine where indexes will be defined. For queries retrieving a range of rows,

clustered indexes are usually better. For point queries, non-clustered indexes are usually

better. Choose columns with the integer data type (or its variants) for indexing. Varchar

column indexing will cause performance problems.

➔ Image and blob ​data columns must not be defined in frequently queried tables because

of performance issues. These data must be placed in separate tables and their pointer

can be used in queried tables.

➔ Normalization must be used as required, to optimize the performance.

Under-normalization will cause excessive repetition of data, over-normalization will

cause excessive joins across too many tables. Both of them will get worse performance.

➔ Spend time for database modeling and design as much as required. Otherwise saved(!)

design time will cause (saved(!) design time) * 100 maintenance and re-design time.

* What happens
Based on the information you provide by creating a proper database, Backend (.Net Core) and
Frontend (React JS) projects are going to be created as integrated.

Genesis DB
➔ New resource code for each table is inserted to the table “authResources”

➔ For each new resource code, 8 available actions (View, Get, List, Insert, Update, Delete,

Import, Export) are inserted to the table “authActions”

➔ An admin user is inserted to the table “coreUsers” with credentials ​test@test.com​ and

123456

➔ New admin user is granted with all existing permissions in table “authUserRights”

Backend Project
Comprehensive 3-tiered backend projects are going to be created.

➔ DBContext

➔ EF Core models and DTOs

➔ RESTful Web services for CRUD operations ​(compliant to OpenAPI 3.0 standards)

◆ Including permission check for the related Resource code + Action

➔ Validations (FluentValidation)

UI Project
A ready-to-run frontend project is going to be created with built-in admin pages and sample
pages.

➔ Sidebar menu and its items

◆ Including permission check for the related resource code

➔ Models (consider them like classes but as JSON format)

➔ Pages

◆ Including permission check for the related Resource code + Action

➔ Appropriate components (Text input, numeric, dropdown, date picker, toggle/switch and

so on according to the data types)

mailto:test@test.com

➔ Titles (based on table names)

◆ “ContactAndMembers” becomes “Contact And Members”

➔ Labels (based on column names)

◆ “contactName” becomes “Contact Name”

➔ Field names (based on column names)

➔ Service URLs

➔ Filled dropdowns (based on foreign keys)

➔ CRUD operations

➔ Serialization

➔ Two-way bindings

➔ Validation rules and respective user friendly warning messages.

